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Method for Designing Closed Airfoils
for Arbitrary Supercritical Speed Distributions

G. Volpe* and R. E. Melnikf
Grumman Corporate Research Center, Bethpage, New York

A method for designing airfoil profiles of specified trailing-edge thickness corresponding to given arbitrary
supereritical speed distributions is described in this paper. It is known that the surface speed must satisfy three
constraints in order for a solution to exist. Hence, to guarantee satisfaction of the constraints in our method, the
speed distribution is specified with three free parameters whose values are found automatically. The modifica-
tions introduced to an ideal target speed distribution are everywhere smooth and avoid the occasional ‘‘spikes”
that were present in an earlier version of the method. The new functional forms used to modify the ideal target
are well behaved at all times and prevent undue excursions of the airfoil profile during the iteration process. Asa
result, the iteration is much faster than in the earlier version of the method and it is now possible to quickly
design airfoil shapes that are shockless or have shocks on the surface or off in the field.

Introduction

IRFOIL sections for supercritical applications can be

designed numerically in a number of different ways, with
each approach having its particular advantages and disadvan-
tages. In the early 1970s hodograph methods such as those of
Garabedian and Korn (described in Ref. 1) and Boerstoel and
Muizing? were formulated and used to generate a number of
contours. Hodograph methods are extremely difficult to use,
however, since the data input needed is not easily identifiable
with the physical or flow characteristics required of the airfoil
to be designed.

With the development of reliable algorithms for calculating
the flow over known airfoil shapes, a second class of “‘direct”’
methods, far easier to use, came into being. By comparing the
solution (pressure distribution and/or force characteristics)
for the flow over some arbitrary initial airfoil contour with a
desired pressure distribution or force coefficients, the contour
is modified in some rational way in the hope of reducing the
differences between the ‘‘target’ and the ‘“current’’ character-
istics. The process obviously has to be iterated. This is the ap-
proach followed by Hicks et al.,® Davis,* and McFadden.?
The methods of Tranen® and Carlson’ also belong in this
category since they are not correctly formulated as inverse
methods. One advantage of the ‘“direct-type’’ methods is that
a realistic airfoil shape can be retained at every step of the
iteration. Its biggest disadvantage, however, is the lack of a
guarantee that the iteration will converge with differences be-
tween computed and target values reduced to arbitrarily small
levels.

An alternative approach is to use an inverse method in
which the airfoil contour is generated through the solution of
a Dirichlet problem whose boundary conditions are set by the
‘““target” speed distribution. This type of inverse method has
been employed for incompressible and subsonic airfoil design
by Mangler,® Lighthill,® Woods,!® Van Ingen,!' Arlinger,!2
and Strand.!”> The main obstacle to the design of airfoils by
this approach arises from the fact that the inverse problem will
generally not have a solution unless the prescribed speed
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distribution satisfies three constraints. This has been shown
clearly by Mangler® and Lighthill.® One constraint requires
that the target speed distribution on the airfoil surface be com-
patible with the prescribed freestream speed. Two additional
constraints arise from the requirement that the airfoil be
closed (or have a specified gap at the trailing edge). The con-
straints were ‘formulated in integral form by Mangler and
Lighthill for incompressible flow and by Woods'? for com-
pressible subcritieal flow of a Karman-Tsien type of gas. If the
target speed distribution satisfies the three constraints, then a
solution to the inverse problem will always exist. Thus, in the
applications carried out in Refs. 11-13, the target speed
distribution was specified with three free parameters whose
values were adjusted to satisfy the three integral constraints.
In these methods, the introduction of the free parameters
could be arranged such that the ‘“ideal”’ speed distribution was
modified only over selected segments of the airfoil surface.
Desired characteristics of the speed distribution (e.g., ‘‘roof-
tops,’’ Stratford-type pressure recovery, rear or front loading)
could be retained without modification if needed.

Difficulties existed in formulating an inverse method for
transonic speeds since the three constraints on the target speed
distribution could no longer be expressed in closed form. The
lack of a clear understanding of the first constraint was the
main source of the difficulties. Volpe and Melnik'* recognized
that the first constraint could be satisfied by treating the value
of the freestream speed as a free parameter that is determined
as part of the solution of the Dirichlet problem. Alternatively,
the target surface speed distribution could be scaled keeping
the freestream speed fixed. These two options are equivalent
in practice, since the quantity of interest is the ratio of the
surface-to-freestream speed. A method for designing airfoils
without any control of the trailing-edge gap was described in
Ref. 14. The airfoils designed by that method were open at the
trailing edge because the additional pair of constraints on the
trailing edge was not enforced.

Later, Volpe!® employed the method of Ref. 14 to deter-
mine the sensitivity of the computed freestream speed and
trailing-edge gap to various classes of target surface speed
distributions. These results were later used to develop an
iterative procedure to design airfoils with closed trailing edges.
In the new method,!¢ three free parameters are adjusted
numerically to drive the values of the freestream speed and
trailing-edge gap dimensions to prescribed values. The param-
eters were introduced in such a way that each mainly affected
only one of the constraints. This permitted the formulation of
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a diagonal-type iterative scheme in which the three parameters
could be determined from three uncoupled one-dimensional

relaxation methods. The introduction of the three free .

parameters into the target speed distribution led to a robust
method for the design of airfoils that generated a close ap-
proximation to a prescribed ideal. Unfortunately, the method
described in Ref. 16 occasionally generated airfoils with spikes
in the resulting pressure distribution near leading edges.

In this paper, we describe an improved scheme for introduc-
ing the necessary freedom into the target speed distribution
that completely eliminates the undesirable spikes from the
solution. As an added benefit, we found that the elimination
of leading-edge spikes also significantly improved the con-
vergence of the method.

Formulation of the Design Problem

The problem we consider is that of constructing the airfoil
profile that will have a surface speed distribution g, equal to
some desired function F (s) everywhere along its arc length.
We also specify the freestream uniquely by defining values for
the freestream velocity, temperature, and pressure (or den-
sity). These in turn determine the freestream Mach number. In
incompressible flow, of course, we need specify only the
velocity to identify the freestream uniquely. Our formulation
applies in its entirety if we specify a surface pressure distribu-
tion instead of a surface speed, since the two are uniquely
related. As discussed previously, this problem generally does
not have a solution unless the prescribed speed distribution
contains several free parameters. These arise from the require-
ment that the upper and lower surface trailing-edge points be
separated by prescribed distances éx and 8y. The horizontal
gap Ox is always set to zero in all cases, while the vertical gap
8y is either set to zero (a closed airfoil) or to a small positive
number. An additional requirement is that the solution in the
far field approaches a uniform freestream plus a circulatory
component as discussed by Ludford.!” These requirements are
easily overlooked as evidenced by the formulations of the air-
foil design codes of Tranen® and Carlson.” The magnitude of
the circulation term in the far field is given by the lift implied
by the prescribed function Fy(s). Less well known is the fact
that the prescribed surface speed g,=F,(s)also determines
the magnitude of the freestream speed. This is easily
demonstrated for incompressible nonlifting flow over a circle,
since in such a case the most general expression for the velocity
at any point in the flowfield is of the form

4=Go— Y b," )
n=2

where g, is the magnitude of the freestream speed, {=re™ the
polar coordinates of the plane, and b,, constants. If we specify
g =q, on a unit circle (r=1), we can expand g, in a Fourier
series ’

N
Go(w) =co+ 2 c,e”ine 2

n=1

At ¢=1, Egs. (1) and (2) must be identical. The &, in Eq. (1)
can thus be computed and we notice that the value of the
freestream g, must also be equal to the zero order term in g,.
This was Lighthill’s first and Mangler’s third constraint in
their formulation of the airfoil design problem. The absence
of first-order terms in Eq. (1) leads to two additional con-
straints corresponding to the trailing-edge gap requirements.
Detailed discussions of the three constraints can be found in
Refs. 8 and 9 for incompressible flow and Refs. 14 and 16 for
transonic flow.

As a consequence of the constraints, an airfoil of trailing-
edge gap dimensions (8x, &y) corresponding to a speed
distribution Fy(s) exists only if F, contains three free
parameters. Two of these parameters are adjusted to give the
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desired 6x and &y. The third is adjusted so that the target sur-
face speed distribution is compatible with the specific
freestream speed. The most general speed distribution we can
specify is, therefore,

40/ G =Fo(8;D1,02D3) 3)

where p,,p,, and p, are the three adjustable parameters whose
values are to be found together with the airfoil solution. In
this paper, we assume the speed distribution to be of the form

Qo/ G =11(:2 )0 (8) +12(5502) + f3(5503)] @

where f, (s) represents the ‘‘ideal’’ target speed distribution
that, in practice, is usually a tabulated function. f}, f,, and f;
are specified functions that modify the ideal target in order to
satisfy the three constraints. In general, it is desirable to
localize the effect of f;, f5, and f; so that the resulting surface
speed will be close to the ideal speed distribution f,(s) over
most of the airfoil surface. Since in transonic flow it is not
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Fig. 1 Original and modified target speed distributions: ‘‘shockless”’
case, M, =0.800, « =0 deg.
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Fig. 2 Designed contour, original target, and computed pressure
distribution: ‘‘shockless’’ case, M, =0.800, =0 deg, C; =0.4801,
Cp=0.0232.
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b) FINAL PROFILE AND NACA 0012

c) FINAL PROFILE AND NACA 000z

41 FINAL PROFILE AND 'NEEOLE"

Fig. 3 Final airfoil profile (solid line) compared with starting profile
(dashed line).

possible to relate p,, p,, and p; to the three constraints in
closed form, a numerical search for the parameters must be
made. The search is greatly facilitated by choosing fi, f,, and
f; in such a way that each significantly affects only one of the
constraints. We would then have three one-dimensional
searches for p;, p,, and p;. The airfoil design sensitivity
studies of Volpe!’ enable us to do this.

Satisfaction of the first constraint is guaranteed by adjust-
ment of p,. f; by definition causes a scaling of surface speed
(@0/9.)- By choosing f; =p,, the scaling is made uniform
along the airfoil. In such a case, we could consider p, as a scal-
ing on either g, or g.. In the latter case, we would essentially
have g, floating and it would be determined as part of the
solution. The scaling can be concentrated in the front half of
the airfoil by choosing

Ji=v1+p, sin(w/2) )

Here we are substituting the ordinate w in the computational
plane for the arc length s. All our computations are carried out
in the computational plane obtained by mapping the airfoil
(any airfoil) into the unit circle. The ordinate w (running from
zero to 2x) then identifies the length along the airfoil surface
from the trailing-edge point on the lower surface to the cor-
responding point on the upper surface. It is more convenient
to use w rather than s and the formulation of the problem is
not affected by this substitution.

Control over 8y, the separation between the upper and
lower surface trailing-edge points, can be exercised by defining

. (8 3
Jo=p;sin (——3—w> , w= Tﬂ' 6)

Outside this range, f, is zero. This function alters the target
speed distribution only on the lower surface of the airfoil. It
would, therefore, be unsatisfactory if we were trying to design
a symmetric airfoil. An alternative form for f; is

w
f2=172<1“*w—>, W=

1

2T —w
=p2< —1), w2271 —w, )
Wy

This function symmetrically alters the magnitude of the speed
in the neighborhood of the trailing edge. In our computational
scheme, the speed takes on opposite signs on the upper and
lower surfaces, accounting for the sign difference between the
two parts of Eq. (7). w, is typically taken as w/3.

The horizontal separation dx between the two trailing-edge
points is affected primarily by the location of the leading-edge
stagnation point. As shown in Ref. 15, a small shift in this
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Fig. 4 Convergence history of maximum surface velocity ratio for
various starter profiles: ‘‘shockless’’ case, M, =0.800, « =0 deg.

Fig. 5 Design point isomachs: ‘‘shockless’’ case, M, =0.800, a=0
deg (contours shown at 0.01 intervals beginning with A =0.810).

Fig. 6 Off-design analysis of ‘‘shockless’” case, a=0 deg (C} cor-
responds to M, =0.795).
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Fig. 7 Off-design isomachs: ‘‘shockless’ case, M, =0.795, a=0
deg, (contours shown at 0.01 intervals beginning with M =0.810).

stagnation point along the surface of the airfoil, on the order
of 2% of the chord length, can alter the horizontal gap by
5-6%. It should be pointed out that a shift in the stagnation
point of 2% along the surface is hardly noticeable when
viewed as a shift along the chord. In order to maintain a loose
coupling among p,, p,, and p;, the shift must be accom-
plished without altering the local velocity gradients. In the
method described in Ref. 16, a function was proposed for f;
that served the purpose. However, spikes were occasionally in-
troduced in the target distribution near the points where f;
returned to zero. A much better strategy is to shift the func-
tional dependence of g, on s locally near the leading edge.
Thus, we let

J3(8) =fols") = fo (s) ®
with
s’ =s—pyh(s) ©

where
1 T
h(s) =—{l —cos [——(s—sr+2As):|}, Sr—2As<s<s;—As
2 As
=1, s;—As<s<s;+As

1 T
=——2—{1 +cos [—A—S(S—ST+AS):|}, Syt AS<s<s§r+2As

(10)

Elsewhere h(s) is zero. s is the point where f, (s) is zero in
the leading-edge region and As is some appropriate distance,
typically 2.5% of the total arc length. This form for f; shifts
the leading-edge stagnation point smoothly without introduc-
ing any wiggles in the target speed distribution and, in addi-
tion, has hardly any effect on the values of p, and p,.

Airfoil Design Scheme

The airfoil corresponding to the target speed distribution
represented by Eq. (4) in which f, (s) represents the “‘ideal’’
target is obtained by iteratively modifying some initial con-
tour. This initial contour need not be ‘‘close’’ to the sought-
after profile for the iteration to converge. The scheme for
modifying the airfoil is the scheme first described by Volpe
and Melnik!# and, in brief, it proceeds as follows. The initial
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contour is mapped into the unit circle by a transformation of

the form
d 1\a-9o )
- (o ‘?) erre an

where z=x+ iy and {=re® are the coordinates in the physical
and mapped planes, respectively, and ex is the included trail-
ing-edge angle. Separating this expression into its real and im-
aginary parts, we obtain (for r=1)

ds (. w\io,

e (2 s1n7> e (12)

1 T
0=2—(1+e)(1r—w)—7+Q (13)

where 6 is the local slope of the airfoil. Q is the Fourier series

N
Q=) (A, sinnw—B, cosnw 14)
n=0

and P is its conjugate series. As described in Ref. 10, if 6 is
known as a function of s, the coefficients of the series are
found by a standard Fourier analysis of Eq. (13). In this map-
ping, the first-order terms of the series are related to the
trailing-edge gap dimensions by
Al =g1(5X,5y;Bo,€)’ Bl =g2(6x16y;B0’5) (15)
where g, and g, represent bilinear functions in éx and é6y. Hav-
ing mapped the airfoil to a circle and the physical plane out-
side the airfoil to the inside of the circle, the next step is the
solution of the appropriate flow equations subject to the
Dirichlet boundary conditions that the tangential speed on the
circle, u, be equal to the total target speed g, to which we are
designing the airfoil. For incompressible flow, the flow is
described by Laplace’s equation, and the solution can be ex-
pressed in closed form. For transonic flow, the solution must
be detéermined numerically, whether we assume the flow to be
described by the potential equation, as we do here, or by a set
of Euler equations. Regardless of which equations are as-
sumed to describe the flowfield, in this Dirichlet-type problem
the circle boundary (as well as the initial airfoil contour) is not
necessarily a streamline and the component of velocity normal
to the circle, v, will not be zero, in general. If the boundary
represented the airfoil corresponding to the specified g, then
v=0 and this will be true at the convergence of our iterative
procedure. At intermediate stages a nonzero v implies that the
actual streamline is (to first order) at incidence from the

assumed boundary by an angle of magnitude

86 =tan"! (v/u) (16)

Equation (16) is used to modify the initial slope distribution 6
in Eq. (13). New Fourier series for Q and P can be computed
as well as a new ds/dw and

ds ds
——= ——— cosf, ——=———sinf 17)
d 3] .

S, x, and y are then obtained by integration. Using this new
airfoil shape, a new Dirichlet problem can be set up and the
process is iterated until a desired tolerance for lv/ul is
achieved. During the iteration procedure p, and p; in Eq. (4)
are adjusted in order that the airfoil will have the desired
trailing-edge dimensions.

We must notice from Eq. (16) that our contour modifica-
tion procedure fails at points where # =0 unless v is also zero
there. In our method, we force v to be zero at the leading-edge
point where u (and g,) are specified to be zero. This is ac-
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complished by adjusting p,. In incompressible flow, it has
been shown that with this procedure the first constraint is
satisfied. Details can be found in Refs. 14 and 16. In contrast
to the problem in which the total velocity distribution
qo=/o(s) is specified on the boundary and that gives rise to
the first constraint, at any stage of our numerical procedure
only the tangential velocity #=f,(s) on the boundary is
specified. For incompressible flow, it can be shown quite eas-
ily that in this latter case the freestream speed can also be
specified simultaneously without setting up any incom-
patibilities between the two boundaries. For each g, we pick
(for a fixed p, on the circle boundary) or for each p; we pick
on the boundary (for fixed gq,), we set up flows that have dif-
ferent v distributions on the circle boundary. In each of these
incompressible flows, the airfoil-type contours containing a
branch point, and on which a speed distribution is some multi-
ple of f,(s), are identical except for a scale factor and a
translation. Details can be found in Ref. 16. In each of these
flows, the airfoil-like contour could be found by first locating
the branch point (leading-edge stagnation point) and then
following the two departing streamlines. Placing the branch
point at a known position (where =0 on the circle boundary)
makes the determination of the contour more convenient
without introducing any restrictions. This procedure
automatically satisfies the first constraint in incompressible
flow and, in addition, for the case where f; =p, in Eq. (4), the
scaling factor p, is identical to that found by enforcing
Lighthill’s first integral constraint.® In contrast to the integral
constraints, this procedure can be applied to compressible
supercritical flows.

Briefly, then, in our procedure during the inner iteration for
the solution of the flowfield, we let ¢, float and pick for g,
the value that forces v to be zero at the leading-edge point
where u (as well as q,) is specified to be zero. Then, p, in Eq.
(4) is adjusted to scale the target speed in order to restore q.,
to its initially prescribed value. As a result of this procedure,
80 in Eq. (16) will always be finite and the first constraint will
be satisfied for all f, and any ¢, .

The solution to the Dirichlet problem, in general, entails a
nonzero net mass flow through the boundary. As shown by
Ludford,!” the correct far-field boundary conditions must
then contain a mass flow term o. The value of this term can be
computed by enforcing the condition that v be zero at the trail-
ing edge of the airfoil. This is analogous to the condition for
evaluating the circulation in the direct Neumann problem for
the airfoil where u is forced to be finite at the trailing edge.
Thus, in practice, ¢, and ¢ are evaluated simultaneously by
forcing v to be zero at the leading- and trailing-edge stagnation
points. As the contour iteration converges to the airfoil, o goes
to zero, as shown in Ref. 14.

Fig. 8 Off-design isomachs: ‘‘shockless’ case, M =0.805, o=0
deg (contours shown at 0.01 intervals beginning with M =0.810).
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In the present method, we assume the flow to be described
by the full potential equation, which is solved by a numerical
algorithm first developed by Jameson!® for the Neumann
problem. The scheme relies on an alternating direction implicit
(ADI) recursion with multigrid sequencing of the meshes to
accelerate convergence. The full potential equation is dis-
cretized in full conservative form on a polar coordinate grid
within the unit circle that represents the boundary. The speed
distribution in Eq. (4), the target, is integrated to give the sur-
face boundary conditions. The far-field boundary conditions
must contain freestream, mass flow, and circulation terms, as
shown by Ludford.!” The solution of each Dirichlet problem
is then obtained as follows. The flowfield is swept once on
each grid down and back through the meshes up to the basic
working mesh. At this point, ¢, and ¢ are determined by forc-
ing v to be zero at the leading-edge point where u is zero and at
the trailing edge. p, is then adjusted to scale g, back to its
specified value and the flowfield is swept again. v at the
leading-edge stagnation point goes to zero quite fast (due to
the continuous resetting of p,). When v is below a given
tolerance (typically 107°-10-¢), estimates are made of the
values that 4, and B, the first-order terms of the series in Eq.
(14), would have if the airfoil were to be modified at that
stage. These values are compared with the values they should
have for the airfoil to have the desired trailing-edge gap
dimensions, as given by Eq. (15). The differences between the
current and desired values, 64, and éB,, are then used to
change p, and p;, respectively. The change in p, is made pro-
portional to 64; and the change in p, is proportional to
(—6B,). Since p, is introduced as a multiplier, a change in the
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Fig. 9 Designed contour, original target, and computed pressure
distribution: case 2a, M, =0.800, a=0 deg, C;=0.3121,
Cp =0.0005.

Fig. 10 Design point isomachs: case 2a, M, =0.800, o =0 deg, (con-
tours shown at 0.01 intervals beginning with M = 0.810).
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Flg 11 Designed contour, original target, and computed pressure
distribution: case 2b, M, =0.800, o«=0 deg, C;=0.2673,
Cp =0.0005.

Fig. 12 Design point isomachs: case 2b, M, =0.800, « =0 deg (con-
tours shown at 0.01 intervals beginning with M = 0.810).

surface boundary conditions due to a new p; can be transmit-
ted through the entire flowfield by scaling the entire potential
field. Using this procedure, we can update p, after each
multigrid sweep of the flowfield without seriously affecting
the convergence rate of the numerical scheme. This procedure
is not possible with p, and p, and, therefore, they are updated
only infrequently. However, the method of false position can
be used to accelerate convergence of p, and p,. The flowfield
is assumed to be converged when all the residuals at all the
flowfield node points are below a specified tolerance and v at
the leading-edge stagnation point together with 84, and 6B,
are below their respective tolerances. At this point, the airfoil
contour is modified and another Dirichlet problem is set up.
There is no need to analyze the new airfoil contour with this
procedure. A direct analysis is made at the very end of the
calculation just to check our results.

Results

The method has been used to design a very large number of
airfoils over a wide range of speed (or pressure) distributions
with and without shock waves. A few examples will be
presented here, all at a freestream Mach number of 0.80 and
zero angle of attack. In our formulation, we are free to specify
the angle of attack. Different choices for the angle of attack
result in different orientations of an otherwise identical con-
tour. All our calculations have been carried out on a grid con-
taining 192 points in the circumferential directions by 32 in the
radial direction with 5 mesh levels in the multigrid- sequence.

The symbols in Fig. 1 depict a speed distribution for which a
closed (zero trailing edge gap) airfoil is sought. This distribu-
tion represents the function f, (s) in Eq. (4). In order to satisfy
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Fig. 13 Original target, computed pressure distributions and con-
tours designed via scheme 1 for éy=0 and dy=2%: case 3,
M, =0.800, o =0 deg.

the three constraints, it must be modified into the distribution
depicted by the solid line. The modification is achieved by tak-
ing £, to be a constant (as will be the case in the remaining ex-
amples except as noted), f, to be as given by Eq. (7), and f; as
defined in Egs. (8-10). We call this strategy for modifying the
speed distribution scheme 1. The required values of the asso-
ciated parameters p,, p,, and p; are found automatically by
the program as part of the airfoil solution. The shift in the
location of the stagnation point should be noticed in Fig. 1.
The shift is achieved smoothly and makes it possible to close
the x gap in the airfoil. The designed airfoil is depicted in Fig.
2 along with the computed pressure distribution. This pressure
distribution is the result of a direct solution of the flowfield
over the designed airfoil contour and it agrees to three decimal
places with the pressure distribution that corresponds to the
target speed distribution (the solid line in Fig. 1). This airfoil
solution is obtained regardless of the airfoil contour initially
prescribed to start the iteration procedure. In Fig. 3 the
designed airfoil contour is compared with four different start-
ing shapes: the Korn airfoil, the NACA 0012, the NACA
0002, and, finally, a “needle” (two straight lines joined at the
trailing edge and at the leading edge tangent to a semicircle of
radius equal to 0.25% of the chord).

It is satisfying to note that the values of p,, p,, and p; are
identical regardless of the starting shape (i.e., the modified
target speed distribution is the same in all cases). Apparently,
by decoupling the three parameters, we have assured that there
exists only a single set of values that satisfies the three con-
straints. It is possible that if the three parameters had been
coupled, more than one set of values might exist that would
satisfy the constraints. Even though we have no formal proof
of this, decoupling appears to guarantee a unique solution,
besides making the search simpler and, therefore, faster. A
measure of the convergence rate of the method is given in Fig.
4, which depicts the maximum value of lv/u! as a function of
design cycles. Usually, after 10-12 cycles, it is difficult to
distinguish any changes in the airfoil shape. Thus, reducing
the maximum lv/ul to 0.05 essentially denotes convergence.
Typically, we run the code to a level where the maximum
fv/ul is 0.001 or smaller.

The pressure distribution depicted in Fig. 2 appears to have
very desirable features; in particular, the “‘plateau’’ region on
the upper surface suggests the absence of a shock. However, a
very large drag (Cp,=0.0232) is present even at the design
point. If we look at the Mach number contours in Fig. 5, we
see that, while there is no shock at the airfoil surface itself, a
very strong shock is present off the surface. The contours
represent increments of 0.01 in Mach number and only con-
tours for values greater than the freestream are shown. At off-
design conditions, the shock reaches the surface, as can be
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Fig. 14 Design point isomachs: case 3, y=0, M =0.800, « =0 deg
(contours shown at 0.01 intervals beginning with M =0.810).

—— | 0.795 10.4884 | 0.0002
------- 0.805 |0.5400 | 0.0004

R ——

Fig. 15 Off-design analysis of case 3 airfoil (y=0), a=0 deg (C;
corresponds to M, =0.795).

seen from the pressure distributions in Fig. 6, computed for
M_ =0.795 and 0.805 and zero angle of attack. The cor-
responding computed Mach number contours are given in
Figs. 7 and 8. Thus, this particular airfoil would be impracti-
cal.

A truly shockless closed airfoil is depicted in Fig. 9, along
with the computed pressure distribution (i.e., modified target)
and the original, unmodified target. Note the low computed
drag (Cj, = 0.0005) of this airfoil. The computed isomach pat-
tern in Fig. 10 shows that the flow over this airfoil is truly
shock free and, at off-design points, only a weak shock
develops. The scheme for modifying the target speed distribu-
tion in this case was the same as the one used in the first exam-
ple. An alternative strategy for modifying the speed distribu-
tion is to choose f, to have the form given in Eq. (6) rather
than the one given by Eq. (7). We call this scheme 2. This
scheme leads to the airfoil depicted in Fig. 11 for the same
ideal target. Note that the load distribution of this airfoil is
substantially different than in the previous case. As in the
previous case, the drag coefficient is very small despite the fact
that a substantial pocket of supersonic flow exists on the lower
surface, as can be seen from Fig. 12.

The next example in Fig. 13 depicts two airfoils designed to
the same ideal target distribution, but with different trailing
edge gaps. One is closed and the other has a trailing-edge gap
of 2% of the chord in the vertical direction (6y =2%, 6x=0).
The designed airfoil contours for each case are shown along
with the corresponding modified target pressure distribution
and the ideal target. The modifications were achieved via
scheme 1. Both airfoils are shock free as evidenced by the very
low drag coefficients. This low drag is achieved in both cases
with substantial lift and reasonable airfoil thickness. The
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Fig. 16 Designed contour, original target, and computed pressure
distribution: case 4, M, =0.800, « =0 deg, C; =0.4972, Cp, =0.0002.

Fig. 17 Design point isomachs: case 4, M, =0.800, « =0 deg, (con-
tours shown at 0.01 intervals beginning with M =0.810).

isomach contours for the closed airfoil are shown in Fig. 14.
At off-design points the performance of these airfoils does not
deteriorate quickly. In Fig. 15, the pressure distributions for
the closed airfoil at zero angle of attack and freestream Mach
numbers of 0.795 and 0.805 are shown. Below the design
point, the airfoil is still shock free and, above its design point,
a shock develops at a slow rate.

Earlier we mentioned that the scaling introduced by f; could
be concentrated in the front part of the airfoil by using Eq. (5)
rather than a constant f;. Using the nonuniform scaling
together with £, given by Eq. (7) (we call this scheme 3), we ob-
tain the airfoil shown in Fig. 16. f; in this case in the same
distribution as in the previous case. This example should thus
be compared with the former. Note that in this case we again
obtain a very low drag for the airfoil resulting from the
absence of a shock, as can be seen from Fig. 17.

Conclusions

The airfoil design method we have described has proved to
be very reliable and fast. By preventing the appearance of un-
warranted spikes in the target distribution, a possibility in a
previous version of the method, the iteration has been speeded
up considerably. A general supercritical speed distribution
with or without shock waves can be prescribed and this is -
modified automatically into one for which an airfoil solution
exists. Naturally, shockless airfoils are by far the more in-
teresting and practical cases and, as it has been shown, they
can now be generated by a straightforward application of our
method. There are no restrictions on the desired trailing-edge
gap. A closed trailing edge is only a special case of a very
general formulation.
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A converged solution ( lv/u| <0.001) generally requires 4-5
min of computing time on a Cray-1M machine and about 20
min on an IBM 3081 computer. To achieve engineering ac-
curacy, the design process could be stopped when
lv/ul <0.05, which would reduce the running time by approx-
imately 25%. In the latter design cycles, the airfoil shape and
the three design parameters are close to their final values.
Hence, these cycles need many fewer iterations to converge the
flowfield than do the earlier cycles. Thus, the savings that
might be expected by increasing the tolerances are not as great
as one might expect. If one did not enforce trailing-edge
closure, the code would run three or four times as fast as it
does in the present mode. In cases where the target speed
distribution is only a minor modification of the direct solution
over a known airfoil shape, the code could be run in such a
manner. For a generally prescribed speed distribution, one
could still run the code without enforcing trailing-edge closure
and then, at the end of the design process, set the values of
first-order terms of the series of the mapping transformation
(A, and B)) to the values that give the desired trailing-edge
gap. This operation makes subtle changes to the entire airfoil
shape. However, in such a case, the differences between the
computed pressure distribution and the target will not be
necessarily small, especially when the target is a shockless
distribution. The code must be run with the first constraint ac-
tive at all times in order to preserve a well-posed mathematical
and numerical problem. As a final comment, it is our feeling
that viscous effects can be incorporated into the formulation
without noticeably affecting the running time.
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